Cuttlefish camouflage: a quantitative study of patterning
نویسندگان
چکیده
منابع مشابه
How visual edge features influence cuttlefish camouflage patterning
Rapid adaptive camouflage is the primary defense of soft-bodied cuttlefish. Previous studies have shown that cuttlefish body patterns are strongly influenced by visual edges in the substrate. The aim of the present study was to examine how cuttlefish body patterning is differentially controlled by various aspects of edges, including contrast polarity, contrast strength, and the presence or abse...
متن کاملThe scaling effects of substrate texture on camouflage patterning in cuttlefish
Camouflage is the primary defense in cuttlefish. The rich repertoire of their body patterns can be categorized into three types: uniform, mottle, and disruptive. Several recent studies have characterized spatial features of substrates responsible for eliciting these body patterns on natural and artificial backgrounds. In the present study, we address the role of spatial scales of substrate text...
متن کاملNight vision by cuttlefish enables changeable camouflage.
Because visual predation occurs day and night, many predators must have good night vision. Prey therefore exhibit antipredator behaviours in very dim light. In the field, the giant Australian cuttlefish (Sepia apama) assumes camouflaged body patterns at night, each tailored to its immediate environment. However, the question of whether cuttlefish have the perceptual capability to change their c...
متن کاملMottle camouflage patterns in cuttlefish: quantitative characterization and visual background stimuli that evoke them.
Cuttlefish and other cephalopods achieve dynamic background matching with two general classes of body patterns: uniform (or uniformly stippled) patterns and mottle patterns. Both pattern types have been described chiefly by the size scale and contrast of their skin components. Mottle body patterns in cephalopods have been characterized previously as small-to-moderate-scale light and dark skin p...
متن کاملCuttlefish use visual cues to determine arm postures for camouflage.
To achieve effective visual camouflage, prey organisms must combine cryptic coloration with the appropriate posture and behaviour to render them difficult to be detected or recognized. Body patterning has been studied in various taxa, yet body postures and their implementation on different backgrounds have seldom been studied experimentally. Here, we provide the first experimental evidence that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biological Journal of the Linnean Society
سال: 2007
ISSN: 0024-4066,1095-8312
DOI: 10.1111/j.1095-8312.2007.00842.x